
Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

2015.02.26 1

CSCI 4140 – Tutorial 6

YouTube IFrame Player API

Matt YIU, Man Tung (mtyiu@cse)

SHB 118
Office Hour: Tuesday, 3-5 pm

2015.02.26

YouTube IFrame Player API

Last updated: 2015.02.24

http://www.cse.cuhk.edu.hk/~mtyiu/

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Outline

• Overview

• Requirements

• Getting started

• Operations

– Play, Pause, Stop, Mute, Unmute, Fast Forward, Rewind, Next Video,
Previous Video

• The onStateChange event

• Destroying the player

• Reference

2015.02.26 2

YouTube IFrame Player API

YouTube Remote

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Overview: What is YouTube IFrame API?

• The IFrame player API lets you embed and control a YouTube
video player on your website using JavaScript

• It posts content to an <iframe> tag on your page

– It provides more flexibility because YouTube can either serve an HTML5
player or a Flash player

– You do not need to care about which player is used!

• The API

– Provides operations for video playback

– Triggers events that can be handled by your event listeners

2015.02.26 3

YouTube IFrame Player API

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Requirements

• Browsers that support the HTML5 postMessage feature

– Chrome / Safari / Firefox support it (forget about IE 7 or below...)

– Why HTML5?

2015.02.26 4

YouTube IFrame Player API

Your page
(Under http://youtube-XXX.rhcloud.com)

<iframe> created by IFrame API
(Under http(s)://youtube.com/)

JavaScript
code for

controlling
the player

Before HTML5, it is
impossible for the scripts
on a site to access
resources (e.g., DOM) from
other sites from different
origin due to security
reasons.
This is called the same-
origin policy (SOP).

Updated

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Requirements

• Browsers that support the HTML5 postMessage feature

– Chrome / Safari / Firefox support it (forget about IE 7 or below...)

– Why HTML5?

2015.02.26 5

YouTube IFrame Player API

Your page
(Under http://youtube-XXX.rhcloud.com)

<iframe> created by IFrame API
(Under http(s)://youtube.com/)

JavaScript
code for

controlling
the player

HTML5 defines the
window.postMessage()
method which enables
cross-origin communication.
In this example, the
YouTube site tells the
browser that it is going to
receive messages from
other sites. Then, a site on
OpenShift can send
messages to it.

postMessage()

Updated

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Requirements

• Browsers that support the HTML5 postMessage feature

– Chrome / Safari / Firefox support it (forget about IE 7 or below...)

• Viewport that is at least 200px by 200px

– This ensures that the player can be fully displayed

– In Assignment 2, you don’t need to check this as the player is only
displayed on desktop view (i.e., device width = md or lg in Bootstrap)

• Implemented onYouTubeIframeAPIReady JS function

– The API calls this function when the JavaScript code for the player API
has been downloaded

• Now let’s see how to use the API

2015.02.26 6

YouTube IFrame Player API

Updated

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample HTML page

2015.02.26 7

YouTube IFrame Player API

<!DOCTYPE html>
<html>
 <body>
 <div id="player"></div>
 <script src="player.js"></script>
 </body>
</html>

youtube-iframe-api/index.html

Tell the browser that you are using
HTML5 (also required by Bootstrap).

This <div> serves as a placeholder,
which will be replaced by the
<iframe> and video player later.

Embed the JavaScript
code to the page.
Note: It is a good
practice to separate
the JavaScript from the
document content.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 8

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

This code loads the IFrame
API code asynchronously.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 9

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

Once the IFrame API code is
loaded, the
onYouTubeIframeAPIReady()
function is executed. This
function creates an <iframe>
and YouTube player.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 10

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

The first parameter specifics either
the DOM element or the id of the
HTML element where the API will
insert the <iframe> tag containing
the player.

In this example, this refers to the
element:
<div id="player"></div>

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 11

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

The second parameter is an
object which specifies player
options.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 12

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

Let’s disable the control bar
inside the player. We only control
the video playback on our remote
in Assignment 2.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 13

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

Specify the ID of the YouTube
video to be loaded by the player.
In Assignment 2, this should be
the first entry in the playlist.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 14

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

In case you don’t know, the video ID of an YouTube video can
be retrieved from its URL:

https://www.youtube.com/watch?v=vJMmt7FyI2s

The GET parameter of “v” (i.e., v=XXXXXXXXXXX) contains the
video ID.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 15

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

To set up event listeners, pass
the function to the “events”
object.
Note: Read the complete source
code for the implementation of
the event listeners (i.e.,
onPlayerReady() &
onPlayerStateChange()).

Event name Event listener

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Getting started: Sample JavaScript

2015.02.26 16

YouTube IFrame Player API

var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

youtube-iframe-api/player.js

Remember to save the player
object returned from new
YT.Player() such that you can
control the player later.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Operations

• After getting a reference to the player object (stored in the
player variable), you can use the player API methods to
control the video playback

• Operations required in Assignment 2:

– Play

– Pause

– Stop

– Mute

– Unmute

2015.02.26 17

YouTube IFrame Player API

– Fast forward

– Rewind

– Previous video

– Next video

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Operations: Play, Pause, Stop, Mute, Unmute

• Suppose the player has loaded a video

• Methods for performing these operations:

– Play:

– Pause:

– Stop:

2015.02.26 18

YouTube IFrame Player API

player.playVideo();

player.pauseVideo();

player.stopVideo();

– Mute:

– Unmute:

player.mute();

player.unMute();

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Operations: Fast Forward, Rewind

• Implementing fast forward and rewind is a bit tricky as the API
does not provide these methods directly

• However, there is a seekTo() method which allows you to
seek to a specified time in the video

• We can also use getCurrentTime() to get the elapsed time
of the currently playing video in seconds:

2015.02.26 19

YouTube IFrame Player API

player.seekTo(seconds:Number, allowSeekAhead:Boolean);

Time to which the player
should advance (in seconds)

Allow or disallow the player to seek beyond
the currently buffered portion of the video
For simplicity, please set it to true!

currentTime = player.getCurrentTime();

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Operations: Fast Forward, Rewind

• Combining these two methods:

• Note: You can assume that the user will never “fast forward” or
“rewind” out of the video, i.e.,

2 < currentTime < Video length (in seconds) - 2

2015.02.26 20

YouTube IFrame Player API

When the user click the “Fast Forward” button:
 currentTime = player.getCurrentTime();
 player.seekTo(currentTime + 2.0); // Seek to 2 seconds later
End

When the user click the “Rewind” button:
 currentTime = player.getCurrentTime();
 player.seekTo(currentTime - 2.0); // Seek to 2 seconds before
End

Pseudocode

Note: This is a our simplified
version of fast forward and
rewind in Assignment 2.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Operations: Next Video, Previous Video

• User manages the playlist in our application (by either adding
or removing videos from the playlist)

• Warning: Don’t use nextVideo() or previousVideo()

– They are for loading and playing the next/previous video in a YouTube
playlist
• Example:

https://www.youtube.com/watch?v=V9Gljy4q3wk&list=PL8F997915F5135BF3

– This is totally different from the playlist managed in our application

– So, how to implement this feature?

• Answer: Use the player.loadVideoById() method

2015.02.26 21

YouTube IFrame Player API

https://www.youtube.com/watch?v=V9Gljy4q3wk&list=PL8F997915F5135BF3
https://www.youtube.com/watch?v=V9Gljy4q3wk&list=PL8F997915F5135BF3

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Operations: Next Video, Previous Video

• Let’s say we store the playlist in an array called “playlist”

• The video currently playing corresponds to the i-th entry of the
playlist

2015.02.26 22

YouTube IFrame Player API

When the user click the “Next Video” button:
 var id = playlist[i + 1]; // Get the next video ID in the playlist
 player.loadVideoById(id); // Change the current video
 i++; // Update current index of the playlist
End

When the user click the “Previous Video” button:
 var id = playlist[i - 1]; // Get the previous video ID in the playlist
 player.loadVideoById(id); // Change the current video
 i--; // Update current index of the playlist
End

Pseudocode

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

The onStateChange event

• Note that the player will just stop when the currently playing
video ends (which is not the expected behavior)

– The player should play the next video in the playlist!

– How can we detect that a video has stopped playing?

2015.02.26 23

YouTube IFrame Player API

function onYouTubeIframeAPIReady() {
 player = new YT.Player('player', {
 height : '390',
 width : '640',
 playerVars: { 'controls' : 0 },
 videoId : 'M7lc1UVf-VE',
 events : {
 'onReady': onPlayerReady,
 'onStateChange': onPlayerStateChange
 }
 });
}

Do you remember the event listeners set
in the onYouTubeIframeAPIReady()
method?
We will use the onStateChange event to
detect the change in player state .

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

The onStateChange event

2015.02.26 24

YouTube IFrame Player API

function onPlayerStateChange(event){
 switch(event.data) {
 case YT.PlayerState.ENDED:
 // ...
 break;
 case YT.PlayerState.PLAYING:
 // ...
 break;
 case YT.PlayerState.PAUSED:
 // ...
 break;

 case YT.PlayerState.BUFFERING:
 // ...
 break;
 case YT.PlayerState.CUED:
 // ...
 break;
 default:
 // ...
 }
}

• This is the event listener of the event “onStateChange”
• The event is triggered when the player changes its state (e.g., from playing to pause/stop)
• The argument of the event listener (event) has an attribute called “data”
• By checking its value, we know the current state of the player, and we can act accordingly

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

The onStateChange event

2015.02.26 25

YouTube IFrame Player API

function onPlayerStateChange(event){
 switch(event.data) {
 case YT.PlayerState.ENDED:
 // ...
 break;
 case YT.PlayerState.PLAYING:
 // ...
 break;
 case YT.PlayerState.PAUSED:
 // ...
 break;

 case YT.PlayerState.BUFFERING:
 // ...
 break;
 case YT.PlayerState.CUED:
 // ...
 break;
 default:
 // ...
 }
}

• This is the event listener of the event “onStateChange”
• The event is triggered when the player changes its state (e.g., from playing to pause/stop)
• The argument of the event listener (event) has an attribute called “data”
• By checking its value, we know the current state of the player, and we can act accordingly

You need to load the next video in the playlist
when the current state of the player is “ENDED”.

Note: For other state changes, you may handle or
ignore them (depends on your implementation)

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Destroying the player

• When the device width is below md or lg in Bootstrap (i.e.,
tablet and mobile view), the player should not be displayed

• If the player is already loaded, you are strongly suggested
destroying the player when it is not shown

– This avoids the video player to keep on playing videos even it is not
displayed

• To destroy a player object:

• Remember to re-create the player object when the page is
restored to desktop view later

2015.02.26 26

YouTube IFrame Player API

player.destroy();

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Destroying the player

• To detect the width of the window, use window.innerWidth

• Use an event listener to detect the “resize” event in window

– Warning: The resize event is triggered many times while you resize the
window!

– Yet, you can only create the player once

• When the device width is below md or lg in Bootstrap (i.e.,
tablet and mobile view), the player should not be displayed

– i.e., the player is displayed only if window.innerWidth >= 992

2015.02.26 27

YouTube IFrame Player API

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Destroying the player

2015.02.26 28

YouTube IFrame Player API

window.addEventListener('resize', function() {
 if (window.innerWidth >= 992) {
 if (player === null) {
 (Display the video player)
 }
 } else {
 player.destroy(); // Destroy the video player
 player = null;
 }
});

Pseudocode

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

Destroying the player

2015.02.26 29

YouTube IFrame Player API

window.addEventListener('resize', function() {
 if (window.innerWidth >= 992) {
 if (player === null) {
 (Display the video player)
 }
 } else {
 player.destroy(); // Destroy the video player
 player = null;
 }
});

Pseudocode

In the “resize” event listener, detect the width
of the window and show/hide the video player

Check whether the player is
already created while the
window is resized.

Set player to null to indicate
that the player is destroyed.

Prepared by Matt YIU, Man Tung

CSCI 4140 – Tutorial 6

References

• YouTube Player API Reference for iframe Embeds:

– https://developers.google.com/youtube/iframe_api_reference?hl=en

– Most of the contents of this tutorial come from this page

• YouTube Player Demo:

– https://developers.google.com/youtube/youtube_player_demo

– End –

2015.02.26 30

YouTube IFrame Player API

https://developers.google.com/youtube/iframe_api_reference?hl=en
https://developers.google.com/youtube/iframe_api_reference?hl=en
https://developers.google.com/youtube/iframe_api_reference?hl=en
https://developers.google.com/youtube/iframe_api_reference?hl=en
https://developers.google.com/youtube/youtube_player_demo
https://developers.google.com/youtube/youtube_player_demo

